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Power-Law Falloff in Two-Dimensional Coulomb
Gases at Inverse Temperature p > 8n

Domingos H. U. Marchetti' and Abel Klein>
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We consider two-dimensional Coulomb gases (standard or hard-core) with
activity z, and prove that for any > 8= the two-point external charges correlation
function exhibits the power-law falloff characteristic of the Kosterlitz—Thouless
phase at sufficiently low activity.

KEY WORDS: Coulomb gas; Kosterlitz—Thouless phase; critical temperature;
multiscale analysis.

1. INTRODUCTION

A two-dimensional (lattice) Coulomb gas is a system of classical particles
with electric charges + 1, whose possible positions range over a finite array
of sites A< Z? interacting via a two-body Coulomb potential. In the
sine-Gordon representation the partition function of the gas is given by

Zy=| T1 2.6(x)) dup(9) (L1)

xeA

where du, is the Gaussian measure with covariance f(—4)" ', p is the
inverse temperature, 4 is the finite-difference Laplacian on Z?, and

A(p)= 3 2.(q)e™

where A, is the “a priori” charge weight at particle activity z = 0.
In this article we will always require 4, to satisfy:

(@) AAg)=4.(—q)
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(b) |i(g)<c(z)e ™ for all geZ\{0}, where v>0 and
lim, |, c(z)=0.

Such A, will be called standard. The typical examples are:

1. The hard-core gas:

1, g=0
AAg)=1<12/2, g==%1
0 otherwise

In this case, 1,(¢) =1+ z cos ¢.
2. The standard gas:

hlg) =~ jzn 7050 cos g6 df
L = 4 CcOos
k4 q 27Z 0 q

In this case, 4,(¢) =e***?.
The external charges correlation function is defined by

Gealx)= —_“é’ZA(X)
where
Z ()= [ 56O =9D T] 1(g(7)) ditgl9) (1.2)

is the external charges partition function. Here £eR. By G.{x) we will
denote a thermodynamic limit.

At high temperature, Brydges and Federbush‘’’ showed that Debye
screening occurs (see also Yang®), ie.,

Ge(x)— Cte>0 as X — o

exponentially fast.

An application of Jensen’s inequality in the g-variables shows that!'®

Cy,e
Gf(x)Z——z—mﬂé o

where 0 < Cp ;< c0.
Frohlich and Spencer'® established the existence of a Kosterlitz—
Thouless transition from a high-temperature to a low-temperature phase,



Power-Law Falloff in 2D Coulomb Gases 137

characterized by scaling and power falloff of correlations. They proved that
Debye screening does not occur for 8 sufficiently large and

C
Gg(x)SWt;

for B> b/cn?, where n=min(&, (1 —¢)) and 0< &< 1.

In a recent article in collaboration with Perez,® we improved on the
Frohlich-Spencer result by showing the existence of a critical inverse
temperature = f(4,)< oo, and 8= 0(1,)>0, such that for all > f§ and
e R we have

C

Gc(x)é——zrxlel,,7

where n =dist(&, Z), 7=dist(&, Z\{0}), and C= C(B, 77) is such that

sup C(f, )< o0 for any y>0

y<i=l1

In addition, it was shown that for standard A4, this critical inverse
temperature f=f(z) is at most 24x in the low-activity limit, ie.,
B(0) = lim, o B(z) < 24n. This result was improved to B(0) <
8(1+./3)n/(3 —/3)~ 17.2n by Marchetti.”

A new proof of the Frohlich and Spencer results was given recently by
Braga.®

Renormalization group analysis and energy-entropy arguments suggest
that f(0)=8n.%7* Recently Dimock and Hurd"® proved that the
eqilibrium measure of a standard Coulomb gas on R? is driven, under a
renormalization group transformation, to a Gaussian measure if > 8z and
z is sufficiently small.

In this article we prove that §(0)< 8z. More precisely, we have the
following result.

Theorem 1.1. Consider a two-dimensional Coulomb gas with a
standard “a priori” charge weight. Let > 8.

Then there exist z(#) >0 and 0 = 8(f) > 0 such that for 0 <z < z(f) we
have

C

Gc(x)<|—x|7,72

for all £¢eR, where n=dist(&, Z), 7=dist(¢, Z\{0}), and C=C(B, z, 77)
with

sup C(f, z, )< o forany 7y>0

y<fisl
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To prove the theorem, we modify the procedure used in ref. 4. The
procedure in ref. 4 used ideas developed for the hierarchical model by
Marchetti and Perez®® combined with the main ingredients of the
Frohlich-Spencer proof.®) As in ref. 3, expectations in the two-dimensional
Coulomb gas are written as convex combinations of expectations in diluted
gases of neutral multipoles of variable sizes by a simple trigonometric
identity. Falloff is extracted from charged multipoles by an analytic
continuation argument. The partition function (with or without external
charges) is initially rewritten as a convex combination of (appropriately
defined) regular partition functions in a given initial scale. It is then proven
that regular partition functions at a given scale can be written as convex
combinations of regular partition functions at the next scale. The scales
used are of the form L, ,~ L{, and in ref. 4 it was shown that

o

ﬁ_(0)<87toc_2

(1.3)

But the analytic continuation argument (Lemma 3.3 in ref. 4) required
a>3/2. Hence B(0)<24n. The o> 3/2 came from taking into account the
background of neutral multipoles in the analytic continuation argument. By
looking more closely at this background, Marchetti® showed that one
needed only o > (1 +/3)/2 and hence f(0) <8(1 +/3)n/(3 —/3) = 17.2%.

It follows from (1.3) that to prove §(0) < 8z, we need to let o} 1. But
we must pay a price for this. The proof of Lemma 3.3 in ref. 4 was based
on an imaginary shift of the integration variable ¢ which was required to
be constant on the support of the neutral multipoles in the background.
The falloff factor obtained at scale L was of the form Y~ L~ DAtr+O)
for some constant C=C(L, a)~L>* % To make Y—0 as L— o0, we
needed o > 3/2. It turns out that the inverse temperature f§ above which the
proof in ref. 4 gives power-law falloff is

E=(8n+2C)2“

By taking the initial scale to infinity we get (1.3).
In this paper we improve the energy estimate to obtain

C=C(L,a)~ (log L)? L'~

where 2 < p < oo is fixed. We can thus pick any a> 1. To do so we cannot
make the imaginary shift constant on the neutral charges background, so
we must consider a more general form of a regular partition function. This
has been advocated by Spencer!!’ (some preliminary calculations were
done by Braga).
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This paper is organized as follows. In Section 2 the partition function
(1.2) with standard “a priori” charge weight is rewritten as a convex
combination of k-regular partition functions for any scale k (Theorem 2.1).
In Section 3 we prove the analogous result for the external charges
partition function (Theorem 3.1) and then prove power decay for the
external charges correlation function (Theorem 1.1). In Section 4 we prove
Lemma 2.3, which gives the energy estimate that allows us to extract
power-law falloff for any scale parameter o > 1. We consider this improve-
ment in the energy estimate the most important result in this work.

2. THE PARTITION FUNCTION

We will follow the notation used in ref. 4, except that we will use two
norms in Z’: |x|, and |x|.,. By B(x, L) we will denote the square in Z?
centered at x with side L, i.e.,

B(x, L)={yeZ2: ly — x| <§}
We will also use B(x, L) = B(x, $L).

We will fix > 8=, and pick «> 1 and an initial scale L, =3, where
n,eN. The successive scales are then given by L,,,=3"*', where
ny 1= [an,] (here [¢]=largest integer <t). We set Ly=1.

We will always take 4 to be a square centered at 0, say 4 = B(0, R),
and we pick N such that Ly ,<R<Ly. We set AO=AnL, 77
B.(y)=B(y, L) for ye A®, B¥)y)=B,(y)nL.Z* for k'<k. Notice
A =4, AN =1{0}.

Let us fix a standard charge weight A.(q); we set {(g)=c e /2
where ¢, is a constant chosen so 3. . {(g)=1. As in ref. 4, Section 2, we
start by rewriting Z , given by (1.1) as a convex combination of expressions
of the form

[ TT (142, cos 4(p,)) dugl9) 2.1)

yeall)

where p,: Z* » Z with supp p, < B,(y), p, #0, and

L3 24(p, ()

O<z< 11 [logz o, )

u€ Bi(y)
py(u}#0

}schfc(z)e*“/zM' (2.2)

where 'py’ = lpy|l ;-ZueZ2 Ipy(u)|! €= 2/(61 IOg 2) <, in case CZL%C(Z)
<1, which is always true for z sufficiently small.
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We will need to perform imaginary shifts in ¢ in expressions like (2.1).
This will change the form of the integrand in (2.1).
So given k, let £ be the real-valued function on Z? given by

f 1 L . 15
logE—Z—:l if |xlz\~6—Lk
L .15 1
£9(x) = gt il CLshh<glon  (3)
. 1
0 it |xla> g L

For yeZ? £¥(x) =e®(x — y). We also define

={el; >k, ye A"}

Because the form of integrand in (2.1) will change, we need to
generalize the notion of a weighed charge density (p, z) used in ref. 4.

Definition. Let keN, yeA®, 1>0. A (k, y, t)-admissible charge
density p consists of:

(i) A charge density p localized on B,(y), ie., p:Z>—>R with
supppc Bi(y) and total charge Q(p)=3,p(u)eZ, with |p|=
>uezz lp(@)] =1 unless p=0.

(ii) A complex-valued activity functional z(p, ¢)=e""?, where
v(p, #) is a complex-valued real-analytic function of the real variables
{¢(u), ue B(y)} such that (a) w(p, #)=Ry(p, ¢) is even in ¢, ie

w(p, —¢)=w(p, #), and H(p, #)=Fy(p,d) is odd in ¢, ic., J(p, —¢)=
—3(p, ¢); (b) the following holds:

|z(p, §)| = e PP K L Te~1Pllo8 L (2.4)
and (c) for n=1,2,., let §, —3“}’ e, j=1,2,..,n; then
11 (555 0.9 <0t bl [1 e 5) 2.5)
where
5 —=Z<5(u 0

P(u)



Power-Law Falloff in 2D Coulomb Gases 141

and
Ly
dp,ey=< ly—ul,

0 otherwise

R 15 1
if Bk()’)ﬂ{X;ZLls|X_u12<gL/+1}#Q

(2.6)

Remark. 1f e %, and p is (k, y, t)-admissible, then for any value of
¢ we have 7(p, ¢ + {5) defined and analytic in { for |{| <d(p, §) ™"

Definition. By an admissible charge density we will mean a
{(k, v, )-admissible charge density for some &, y, 1.

Definition. Let p>2 be fixed, keN, yeA4%®, r>0. A collection
N .y of neutral [ie., Q(p)=0] admissible charge densities will be called
a (k, y, r)-sparse neutral ensemble if:

(i) Fork=1, ¥y, =

(ii) For k=2, 3,..., we have

J‘/(k,y,r)=< U JV(kLy:r)) U {r}

’ k—
y e BE Uy

where A,y ,, is a (k—1, y/,r)-sparse neutral ensemble and p is a
(k—1, y", r)-admissible neutral charge density for some y”eB¥~1(y)
with (2.4) replaced by

8
<—L7 —|pl/log Ly -1 )
Iz(p, $)I (1082)4 k—1€ (2.7)

and
I1<|pl<(log L,_,)” (2.8)
We let
FMuyms#)= [I  {1+e*®P cos[d(p)+Hp, 1}
pPENK, yr)

Definition. GivenkeNandr >0, a (k, r)-regular charge assignment
is a collection { A ,.,), P, },c a0, Where A , ) is a (k, y, r)-sparse neutral
ensemble and p, is a [k, p, £ + 2(a ~ 1)]-admissible charge density, the p,’s
having disjoint supports.

Definition. A (k, r)-regular partition function is a partition function
of the form

Zay=| T1 Kwyoo®) dusgl®) (29)

ye Ak
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where
Ko (@) =F( Ny 0y 91 + e cos[d(p,) + Hp,, )1}

with { A .0, Py}, 400 being a (k, r)-regular charge assignment.
We have the following result.

Theorem 2.1. Let 1 <x <2 and suppose r >0 is such that

oa—1 p
<r<-—-—2 2.10
2—a g 4n * ( )
Then, if the initial scale L, is sufficiently large, there exists 0 <=
Z(a, r, B, p, L) such that if the activity z is such that 0<z<2z, the
Coulomb gas partition function Z, can always be written as a convex

combination of (k, r)-regular partition functions for any k=1, 2,..., N.

20

Remark. Notice that (2.10) can be satisfied if and only if
f>8na/(2 —a).

Proof. The proof is by induction. The initial step, k=1, follows
immediately from (2.1) and (2.2).

The proof of the inductive step, as the proof of Theorem 3.1 in ref. 4,
uses two basic lemmas. The first is just Lemma 2.1 of ref. 4, which was
already used in the derivation of (2.1) and (2.2). We will now rewrite it in
the form in which we will use it, for the reader’s convenience (we just
substitute e for z, and ¢,+ 3, for ¢,).

Lemma 2.2. Let I be an index set with N elements, and let w,, §,,
®,;€R be given for each ie I Then

[T[t+e”cos(d;+9,)1= > c,[1+e™cos(d,+3,)]

iel ce%(l)

where 4(I)= {6:1- {0,1, —1}; o not identically zero},

o= Z G,
iel
3,=Y a9
iel

W=, loi|(w;+1logby)
iel
where b, is a constant depending only on N given by
N

=(2UN_1)-1g
by= @V =1D7 <

and 0<c,, XocwmnCo=1
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Now let ke {1,2,.,N—1} and let {A} ., p,},ca0 be a (k, r)-
regular charge assignment. Let Z, , be given by (2.9). As in ref. 4,
pp. 147-148, we can use Lemma 2.2 to rewrite Z, ,, as a convex combination
of partition functions of the form

[ IL | Knt®) dugt) (2.11)

where for each ue A%+ 1
Ko =F( Wi 1rys ) {1+ %P cos[g(p¥) + $(p¥, $)]1}

where

Narrwn= U My (2.12)

veBf e

is a (k+ 1, u, r)-sparse neutral ensemble and, for each ue A*+1, p* is of
the form

p¥= 3% a,p, (2.13)
ve B )
for some o e %(BY) (u)), and
w(py, ¢)= lo,|w(p,, #) +c, (2.14)
ve B )
Hpk.4)= Y 0,90, ¢) (2.15)
veBH )

where ¢, is constant in ¢,

Yok, P)=w(pl, ¢)+id(pk, ¢) (2.16)
8
e(u(ﬂ,f, @) < l: L—re‘|pyi/log Lk:| 217
.VE}‘;{‘(“) (10g2)4 k ( )
gy #0

all the p¥, ue A%* Y, have disjoint support, and we arranged this so that
if for some uoe A%+ we have p¥=p, for some yeB¥) (), then
ye B (uy), and moreover,

B(y, 5L, 1) nsupp pf =& (2.18)

for ue A%+ Y usu,.

822/64/1-2-10
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To propagate our bounds on the activities to the next scale, we will
need, in some cases, to extract a self-energy term as in refs. 3 and 4. This
will be done by the following lemma, which improves on the energy
estimates of previous approaches (compare with Lemma 3.3 in ref. 4; the
crucial difference is that now we only require « > 1 instead of o > 3/2).

Lemma 2.3. Let | < a < 2, r satisfying (2.10), and let
{ N+ 1w PE}uean+n be given by (2.12)-(2.17). Suppose that for some
use A%+ we have p¥ =p, for some ye B¥) (u,) and (2.18) holds. Then,
we have, for any k>0,

[ {expLo(oz, #)+i(2)T} F(Fip 110,13 9)

X [T K& 10n(8) dug(9)

u# ug

= Y [ {XDL1rs )+ i8(P0) T} F(w 110,13 6)

X [T K+ 1 n(8) dig(d) (2.19a)

u# uy

where Y% is a constant satisfying

Lk+1 7K|q[<Y(k)< Lk+1 —k(lgl — x(n/B)(1 +a)) 2 19b
<15Lk> = \<15Lk) (219

where g=Q(p¥), p,, is a charge density with support on B(y, $L,, ) such
that Q(p,,) =4,

d
B
with 0<c¢"< ¢’ <, a=a(n, L)>0 withlim,, , ,a=0, and y(p,,, 4)is a
complex-valued real-analytic function of the real variables {¢(x);x¢e
Bk+1(u0)}s WIth m‘y(ﬁuoa ¢) cven in ¢7 8y(ﬁu0’ ¢) Odd in ¢’ and

K = l ’
CH—BIOg Lk<|puol_‘p:‘0i<0 1Ong

Ly,
1RGPy 6) — (0%, )| <x*br log 1;‘L: (220)

for some b=b(x,r, L) with lim, ,  b=0. Moreover, for all n=1,2,..,
0,€Fi1, J=1un,

11 (355) 10w 0 <t ([ 722 | 1ot 4€) 1 dpue ) 220
Jj=1 k+1 j=1

where C=C(L,, o, r, p) with lim,,_, , C=0.
Lemma 2.3 will be proven in Section 4.
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Remark. Lemma 2.3 is true also if we take the complex conjugation
of both sides in (2.19a). We could thus replace e’*?+¢"~% by
2¢™ cos(¢ + §y). We have stated Lemma 2.3 in this form for convenience
in further applications.

We can now finish the proof of Theorem 2.1. Let us fix ue A%+ Y and

let o, € (Bt} (1)) be he one in (2.13). We consider several cases:

i) 2,lo,i=2.

In this case we define Ay .= Ns1.urn and p,=p* We must
prove p,is [k+ 1, u, r +2(z— 1)]-admissible.
From (2.17) we have

1
— u l
lz(p,, ) <——L'+2(“_1) o lPul/log Lick
k+1

if r>20(a—1)/(2—a) and L, is sufficiently large, since the {p,},. ,» have
disjoint supports so

lpd= 3 lp,l (2.22)

yiay#0

It remains to prove (2.5). Since each w(p, ¢) is even in ¢ and each
S(p, #) is odd, we have from (2.14) and (2.15) that

Wou §)= 3, on|v<py,|2—y¢>+cu (2.23)

ve Bl ) /|

Now let 6,,.., 0,€ % .. It follows from (2.23), (2.5), and (2.22) that

n 6 n hn
1 (5,—-—6—;5) 2o ¢)' <nl Y 1oyl 11 dio, 5)<nt 1pa] TT d(pu )
Jj=1 yioy#0 J=1 Jj=1

(i) >,lo,|=1

Here we must consider three subcases:

(iia) [p¥=(log Ly)”

We let ‘Mk+1,u,r):W7k+l,u,r) and pu=p:

Then (2.4) follows for p, [in the (k + 1)th scale] from (2.17), since if
L is sufficiently large, we have

(log L)?~?>a(r + 2a)

Thus, p, is [k+1, u, r + 2(« — 1)]-admissible.
(iib) |p¥l<(log L;)? and Q(p})=0.
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Then A i1un=Nusrun{pF} is a (k+1,u,r)-sparse neutral
ensemble. We take p,=0.

(iic) [pf|<(log Ly)” and Q(p)#0.
(2.11) can be rewritten as

[ 1+ 4 {exploior. &)+ ib(p2)] +exp (o, #) — i$(p2)]})

X F(JV(k+ Lurs 9) H K&+ 1u.n(#) dug(@) (2.24)

u'EA(k+1}
wFEu

We apply Lemma 2.3 to (2.24), replacing p¥ by p,. We take p,=7,,
P, #)=7(p., #) +log Y®. Using (2.17), (2.19b), and (2.20), we get

8 — lpi| Ly, \“rt b +atbh)
] g——L r — AN NES
20600 ) < o gy L (exp IOng><15Lk>

We choose
x=[%”(1 +a+bﬁ)}l

and recall 0< |p,| — |pX| <c¢'(x/B)log L,.
Thus, if
B

S S—
“Im(ltatbp) "

we have
IZ(p , ¢)] ngjrlﬁ—ﬂafl))e—lpul/log L4t
u

if L, is sufficiently large.

In view of (2.21), we can conclude that p, is [k+1, u, r +2(x—1)]-
admissible if L, is sufficiently large. We take A\, = ./V(k L)

This concludes the proof of Theorem 2.1.

3. POWER-LAW FALLOFF

We start by studying the external charges partition function Z; ,(x)
given by (1.2). We want to prove the analogue of Theorem 2.1 for it. The
extension of the treatment given to the partition function Z, in Section 2
to Z, ,(x) is similar to the extension in ref. 4. We shall skip details when
they are essentially done in ref. 4.
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Given {eR, we let n=dist(¢, Z) and 7=dist(¢, Z\{0}). We fix
x€Z? and choose N, such that 3Ly <|x|, <%Ly,,,. Without loss of
generality we take Ny > 1.

As in (2.1), the external charges partition function can be written as a
convex combination of expansions of the form

[ @ =00 [T [1 42, cos d(p,)] dus(9) (3.1)

yeAl)

where {(p,,z,); ye 4"} are the same as in (2.1) and (2.2). This is the
initial step in the inductive procedure we will now describe.

We have two distinguished sites, 0 and x. To keep track of these sites,
we introduce the following notation: given ye 4, we denote by y, the
unique point in 4% such that ye B (y,). Notice that 0, =0 for all k. At
scale k=1, 2,.., N, we will have two distinguished sites in 4%: 0 and x,.
For k= Ny+ 1 we have x, =0.

As in ref. 4, at the squares B,(0) and B,(x,) we will replace the
previously unique charge density p by two charges densities, p*, p~, with
Q(p*)=0(p); terms of the form {1+ e cos[d(p)+ Hp, #)]1} are
replaced by terms of the form

1+ %[ey(p*,¢)+i¢(p*) + e?(p’,‘#)fwﬁ(p’)]

where, as before, y(p*, d)=w(p*, ¢)+i%(p*, ¢). Here 7 is the complex
conjugate of y.

Definition. LetkeN, ye A%, r>0. A pair (p*, p ) is a (k, y, s)-
admissible pair of charge densities if:

(i) p*=p+o, where p and o are charge densities with support in

Bdy)=B(», (10/3)Ly), Q(p*)=Q(p~)€Z [s0 Q(a)=0], |p| > 1 unless
p=0, and

’ k—l

,0.|<f_“
187 aa—1

log L,

with 0 < ¢’ < o0 given by (4.23).

(i) p* have activity functionals z(p*, ¢)=e’*™% with y(p*, ¢)
being a complex-valued real-analytic function of {#(u); ue B,(y)} such
that (a) w(p™, #)=Ry(p*, ¢) is even in ¢ and Y(p*, ¢) = Fy(p *, ¢) is odd
in ¢; (b)

2(p™=, §)| S Lot os e (32)
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where (p= > =|p| + |o| (notice we allow supp p N supp ¢ # F); and (c)

0 + + . 5
1 (835) 1= ) <t <o T1 o, 5

Jj=1 =1

with ,..., §,€ .

Definition. Let k=1,2,., N, y,=0 or x,, r>s>0. A collection
Gk, yi.rsy Of neutral weighed charge densities will be called a (k, y;, r, 5)-
sparse modified neutral ensemble if:

(l) For k= 1, g(l,yb,,s)zg-
(i) For k=2,.., N,

g(k,yk,r,s)z U JV{k—l,u,r) U (g;(k-—l,yk,l,r,s) U {(p+’ pg)}

ue BE Dy
uF yp—1

(iii) For k=Ny+1

ENo+1,0,r,5) = U N Nosur) U ENo. ¥ r9) U {07}

ueB%oll(O) ¥ =0,xn9

u#0,xn5
(iv) For k>N,+1, we have as in (ii), where A, _,,, is a
(k—1, u, r)-sparse neutral ensemble, &, ; ,,, is a (k—1, y, r, s)-sparse
modified neutral ensemble, and (p™, p ") is a (k—1, ', s)-admissible pair
of neutral charge densities for some y'e B¥~1(y,) with (3.2) replaced by
2%.3

,ev(pf,ml L—" 1"

(log 2)* Lt

and p* = p + ¢ with p satisfying (2.8).

Notice that &, ,,,, consists of charge densities p and of pairs of
charge densities (p*, p™).

We let

Gy )= [] {1+ cos[g(p)+3(p, $)1}

P €S, yor,5)

X l_[ H((P+7p7)s¢)

(Pt p~)e&W, 1)

where

H((p+, P ), ¢)= 1 _+_%(ey(p*,¢)+i¢(p*)+e"/‘(pi¢)~i¢(p’>)
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Definition. Let £=1,.., N, r>5>0. A (k, r, s)-modified charge
assignment is a collection

{‘/‘/(k,y,r)’ py}ye/l“‘)\{o,xk} (& {(gj(k,y,r,s)’ (p;—> p;)}y:ﬂ,xk

where, for each y e A%\ {0, x, }, 4, ., isa (k, y, r)-sparse neutral ensemble
and p, is a [k, y, r + 2(a — 1)]-admissible charge density, and for y =0, x,,
Sk, y.r.s) 18 @ (k, y, r, s)-sparse modified neutral ensemble and (p*, p7) is
a (k, y, s)-admissible pair of charge densities. In addition, the p,’s and
(p, , p, ) have disjoint support, where the support of (p*, p ) is the union
of the supports of p* and p~.

Definition. A (%, r, s)-regular external charges partition function is
an expression of the form

28 =00 [T Ky ()

ye ARN{0,x}

x [T WP Ry y,r($) disg() (3.32)

y=0,x;

where K, , ,(¢) is as in (2.9) and

R(k, y,r,s)(¢) = G(éo(k, y,r,s); ¢) H((p;n p; )7 ¢)
with
{'/V(k,y,r)’ py}yeA”‘)\{O,xk} o {g(k,y,r,_v)a (p;, p;)}y:O,xk

being a (k, r, s) modified charge assignment; w, is the modified external
charge density; for k=1,2,., Ny, we=w® +w, where w®, wl are
external charge densities with disjoint supports contained in B.(0), B.(x,),
respectively, and Q(w(?)= —Q(w{?)=1; for k> Ny+1, w, is a neutral
charge density localized in B,(0). In addition, W(¢) =exp[y(éwg”, ¢)],
where y(éw(’; 4) is a complex-valued real analytic function of {@(u);
ue B,(y)} with even real part and odd imaginary part, satisfying (2.5), and
such that:

i) wihg)=1
(ii) We have

L, — pon?/8n . . L _ pon?/ion
<15Lk ) WIS V@) <<15Lk > WD)
B —1

(3.3b)
for k=1,.., Ny, where 6 =1/(1 + a+ Bb) with a, b given in Lemma 2.3.
(iii) W)= W (g) W (g) for k= No+ 1.
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The extension of Theorem 2.1 is as follows.

Theorem 3.1. Let 1 <a<2 and r satisfying (2.10). There exists
8=20d(a, r, B, Ly) with lim,, _ ,, 6 =1, such that, if

0<s<min{1<r—ﬁ(°‘_1)5"2>,ﬁ5(ﬁ2_"2/2)} (34)
o 8n 4n

and the initial scale L, is sufficiently large, there exists 0 <z(a, r, f, p, L)
such that if the activity z is such that 0 <z < z(«, r, f§, p, L), the Coulomb-
gas external-charges partition function Z, ,(x) can always be written as a
convex combination of (k,r, s)-regular partition functions for any
k=1,2,..,N.

Proof. Theorem 3.1 is proven by induction. The initial step, k=1,
follows from (3.1). The inductive step proceeds as in the proof of Theorem 4.3
in ref. 4, using Lemma 2.3 instead of Lemma 3.3 in ref. 4. We present here
the induction for k=1, 2,..., N,— 1, the modifications for k > N, being just
as in ref. 4.

So, let ke {l,., No—1}, and let Z*)(x) be given by (3.3a) with
> s> 0 satisfying (2.10) and (3.4). Proceeding as in the proof of Theorem 4.3
in ref. 4, one can write this as a convex combination of expressions of the
form

e T Kuorun@®) TT WOGIRE0n(®) ditsl9)

we AK+TIN{0, x4 1} y=0xk41
(3.5)

where Ky, 1,(9), ue AXN\{0, x,,} is as in (2.9) (at scale k£ + 1; here
we used the proof of Theorem 2.1),

R?:k+l,y,r,s)= G(ga(k-irl,y,r,s); ¢) H((p;+’ p);/ki)’ ¢)
with

g(k+ 1, y,r,s) = U '/V(‘k,u,r) U é‘)(k, Yiests 8}

uEB}(kll(y)
U Yk

being a (k+ 1, y, r, s)-sparse modified neutral gnsemble, and (p}*,pF7)
is a pair of charges with support in B, (yy,,) of the form
pr*=p*+1,pE, with complex-valued activities functionals z(p}*, ¢) =
exp[y(p**, ¢)1, y(p}*, ¢) being a complex-valued real-analytic function
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of the variables {¢(u), ue B, ,(y,, )} such that its real part w(p**, ¢) is
even in ¢ and its imaginary part 9(p}*, ¢) is odd in ¢,

2 L 2\ + i —<pyElog Ly
020 <| gy | |(3) 00| ¢ (36)

for some 1,, 7,=0 or 1 with 7, + 7, # 0 (notice that we actually have 7,=0
or 1 in Lemma 4.1 of ref. 4).

Remark. Lemma 2.1 was stated in the form in which it was used in
Section 2. In this section we will use it in (3.5) with p¥ replaced by either
Ew) or Ew £ px*; the proof is still valid with the same conclusions.
Notice that it follows from (2.3) that the imaginary shift in the proof of
Lemma 2.3 is constant on the support of p*, so their presence does not
affect Lemma 2.3.

We consider several cases:

(i) 7;#0. We define é”(kH,y!,,S):g"(kH,y,,,s), and look separately at
each factor of

{exp[iég(wi) 1} WL+ 5 {exp[y(p}*, ¢) +id(pF )]
+exply(py . #)—ig(pr~)1}) (3.7)
We use Lemma 2.3 for the first factor to replace w(?’ by

éwl(cy)
¢

and W by W¥*; we choose x =5>B5/9n¢. Tt follows from (2.19b) and
(2.20) that (3.3b) is satisfied; (2.5) follows from (2.21). We then see that
(3.7) can be replaced by

{expLilg(wi?l )1} Wi V(1 + 2 {exp[y(;, ) +ig(5,")]
+exp[7(p,, ¢)—ig(p;)1}) (3.8)

(¥} (V)
Wi =W

where

SO
PF=d2pry—Elw —w) |

’ 2

=Py T, 108 L«
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by Lemma 2.3, and
(k)

V(P ) =v(p)*, ¢) +log 2
It follows that

iev(ﬁf¢)| <<

Lk N 1>ﬁ5n2/8n 24 1

= c'd/18xn 7(;3*)/10ng
151,

(log2)* Lt ¢

<( L >se—<ﬁyi>/long+1 {3.9)
L.,

if s<(1/a)[r — Bd(x—1)n*/8=] and L, sufficiently large. So (P, h,)is a
(k+1, ye, 1, s)-admissible pair of charge densities.

(i) 7,=0,50 p}~ =p} =p, t0,. We consider three subcases:

(iia) |p,|=(ogLy)?. We set &1 ), = é"(kH .5y, and as before
apply Lemma 2.3 to the first factor in (3.7), obtaining (3.8). The only
difference is that we do not have (3.9), but it follows from (3.6) and (3.3b)

that
2 ¥4
7y )] < Liss pore <L )
15L, log 2

L —(1/a)(log Ly)P~2 .
XLk—s < Z‘Fl) eL"é/lSRe»—(ﬁ}T >/og Ly
k

~ T
—s L, =Ly dog Ly i
SLigp e

if L, is sufficiently large, so
_ po Bo >
P2 Pe PO 5
(log Ly) <s+32 Za s+8n11

for all u since #*>< 1/4.

(iib) |p,,) <(log Ly)? and Q(p, )=0. We apply Lemma 2.3 to all
factors in (3.7), choosing x =#?B8/9n¢, and we notice that (3.7) can be
written as [see (4.22) for a similar argument ]

{expLigg(w) )1} WED(1 +L{exply(p} ¥, ¢) +id(p} *)]
+exp[3(p) =, ¢)—iglp~)1})
1t follows from (3.6) that
e 1yerr= B 1.0y U {037, 03 7))

isa (k+1, y, r, s)-sparse modified neutral ensemble.
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(HC) ‘pyk‘ < (1Og Lk)p and Q(pyk) # 0 We take éa(k+ Lyr, 3)
co@(kH s, and apply Lemma 2.3 to each term in (3.7), replacing it by
(3.8), where wg?) |, W+ " are as above and

pi=pF TEWDF oupl,

wi(g)

— i +log Y®
Wi (4)

v(PE, $)=1(pF*, ¢)+log

SO

Bé 2/87z 4 — Bén¥/dn
" P79 < Lice N 2 L= Licss ! e~ <PrEdflog Ly
15L, log2) 7% \15L,

[ Notice that we chose x in Lemma 2.3, for the second and third terms in
(3.7), to be k= fon/2n.]
Now, by Lemma 2.3,

_ 3 ' o
(P> <oy = w2 )+ St log Ly

’ 2

c'o
<pFry+ %’2

"on
log Lk+c nlong

’

5¢'6
<<p;?‘i>+§—long

Thus

gt _ _ ¢t
|ez(py ¢)| ngile Py >log Licy1

if s< (pS/4m)(i2—n*/2) and L, sufficiently large.

This completes the proof of Theorem 3.1 for k< N, — 1.

We can now prove Theorem 1.1, We follow the proof of Theorems 1.1
and 1.2 in ref. 4. Let xeZ? with Ly <2|x|,<Ly,.;, No>1, and let
A=B(0,R) with Ly_;<R<Ly, N>N, For any B>8rn, we pick
1 <a<2, L, sufficiently large, and » > 0 such that

20(x— 1) o
2 <r<4n—2<x (3.10)

Notice that (3.10) requires

>87t o
6 2—ua
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which can always be satisfied for f> 87 by picking « sufficiently ciose to
one and L, sufficiently large, since lim, _, , 6 =1. We take L, large enough
so that Theorem 3.1 holds. Then we have, for any 0 <z <z(L,, «), that the
external charges correlation function G, 4(x) can be written as

Z Z(NAr_\) X) Nrs)(x)
Gy 4(x) =222 et 4 Lt= Y d, e (3.11)
! Zvefi CVZE)NAJ) yeF Zg)NA v)

where ¢,, d,>0, Y, _5¢,=Y, . 5 d,=1, where for each ye Z, ZMro(x)
is an (N 7, s) regular external charges partition function and Z§", A’;’ is the
same expression with ¢ =0. Here r, s are chosen satisfying (2.10) and (3.4),
which can be done because of (3.10).

We must first show that (3.11) is well defined. Notice that {—0
implies # — 0 and 77 — 1. Thus, if s satisfies (3.4) for any ¢, it also satisfies
(3.4) for £ =0, and Theorem 3.1 also applies to ¢ =0. Moreover, for any
y€ % the partition function Z{";"” has the following properties:

i) wiMg) =1L
(ii) For all k=1,.,N and y=0, x, (p},p,)€E ,, ., satisly
P =Py =Py and y(p, , $)=7(p,,, ¢), 80
L+ 3{exply(p,}, 8) +ig(p,t)] +exp[i(p,,, 4)—id(p,, )1}
— 1+ e*0n cos[p(p,,) + Hp,,. 4)] (3.12)

where p,, is a (k, y,, s)-admissible charge density.
Thus we have

1+ e cos[(p,) + 3(p,,, $)] = 1 ——L—S (3.13)

where ¢ is a fixed constant. It follows that Z{¥,"*) is the integral of a strictly
positive function and hence >0.

Thus (3.11) is well defined.

For £ #0, we have

1
43 {exploy;. 9) + i8(p3) 1+ explilo . ) —idlo, )1} <1+ 5

(3.14)

From (3.11), (3.13), (3.14), and (3.3b) we get (see ref. 4, p. 161 for
details)
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12850
|G (%) < Z d Z(N,7.5)
yeF ()Ay
1+cL; )
< |W(N)f
b (1—- cLy 0

{ <1+CL ﬁ L, P
15L,

C,< Ly, )W/Sn
15M-1r

<Clx] "

for some 6 =60(a, L,, B)>0.
This completes the proof of Theorem 1.1.

4. THE PROOF OF LEMMA 2.3

Let us fix ke {1,2,.,N—1}, ue A%*Y, and recall A, given
by (2.12).
For pe Ny 1,0, lot

I(p, ¢) =log{l +e“*? cos[¢(p) + 3(p, )1} (41)

Using the Taylor series for log(1 + x) at x > 0, plus cos 6§ = 1(e? + e~ %),
we can write

F(pd)=Y T apemo® (42)

m=1 nely

where J,, = {—m, —m+2, —m+4,.,m—2,m},

(=1 m!
" m 2" [(m—n)2]! [(m+n)2]!

Vaml 05 #) = mw(p, ¢) +in($(p) + I(p, 4))

and notice that

a

) Ianm|<~

neJy
and

}eYnm(P,¢)| — emw(p,¢)
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It thus follows from (2.7) that (4.2) is absolutely convergent if L, was
sufficiently large.

Lemma 4.1. Let p be an (/, y, r)-admissible neutral charge density.
Then I'(p, §) is a real-valued real-analytic function of the real variables
{#(¥'); y'€B,(y)}, such that for all N=1,2,.. and 9,,.., 6 y€ F; we have

N

i ( 2] T0.8)| <C.C¥NL gl Hl dp3)  (43)

for some fixed constants C<ow and C,=C (L, r)<oo such that
lim, ., C;=0.

Proof. Let %, be the collection of partitions P=(Py,.., P,) of
{1,.., N}; given a function f and derivations D,,.., D, we have

Diie’= T [T 0ns)|e! (44)
Pe?yLi=1
where Dy =11,c0 D;.
Now let constants C, C, ..., Cy be given, and suppose for Q < {1, 2,.., N}

that we have
Dy f1<CCypr! (4.5)

where r=|Q| and Cy =110 C;-
Then, if given P = (P,,.., P,) we let r,=|P,|, it follows from (4.4) and
(4.5) that

Dps, e |<< AR !) eI Cau (46)
PePy
Let Ty=3p.p, Cri!l--r . M n=#{P:r;=j, i=1,.5s}, we have
Cn1+v-- ny
N! —_——
nl,.z.,nN nl' ..nN?

where the summation is over all nonnegative integers n,..., Hy, Which
are solutions of the equation n,+2n,+ --- + Nny=N. By using this
constraint, T’y can be rewritten as

1 /C\*1 /C\* 1 [C\™
N _ = — | — ee—— | —
Ty=2"N! Z n1!<2> n2!<22> nN!<2N>

,,,,, ny

N
<2VNlexp (C 3 2“1')

Jj=1

<2¥Nlexp C
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Thus, it follows from (4.6) that
1Dy’ | <2VNVele | Cpy Ly (4.7)

We now use (4.2) and apply (4.4)-(4.7) to f=y,,, D;=06,-8/0¢,
j=1,2,..,N. To do so, we must establish (4.5). We have

J nm Sm J [ ( ’¢)+l¢ p)]’
HQ< ) HQ< 75
<m| 1101 T1 dlo.8)+.010,(0)1
je@

where we used [#| <m and (2.5). Here r=|Q|, 9, ,=1ifr=1,50 Q0= {j,},
and zero otherwise.
If 6=¢" e %, we use the neutrality of p to get

3(p) =5 50x) p(x)= £ p(0)[0x) = 3(0)]
SO

8(p) <lpl Y 18(x)—d(v)l <clpl d(p, d)

X € supp p

for some fixed constant ¢ < 0.
Thus, recalling that [p| > 1,

]EQ<’ 5¢>Vnm

Thus, we can use (4.7) to conclude

11 (5-)

where C=2(1+c¢).
It now follows from (4.2) that

<m-rlpl"(1+¢)" ] d(p, 8))
je@

<N! lplNCNH d(p, 6,)|e”*!|"

Jj=1

d 1
l—[ < 7 a¢> p ¢)I<N' lp|NCN1_[ d(p’éj) Z w+1|m

j=1 m= 1
which establishes (4.3).

Lemma 4.2. Let p be an (/, y, r)-admissible neutral charge density,
de %, k real. Let |k|Clp| d(p, 6)<1/2. We have

IR{T(p, ¢ +ixd)—I'(p, $)}| < C36*|p|* d(p, 8)* (4.8)
with C, = Cy(Ly, o, r) >0 as L, - co.
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Proof. We have
K
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) a\" }
|R{T(p, ¢+ icd)— T (p, ) }| < Z i (5 —> I'(p, ¢ ‘
Meven

< Y CIkClpl d(p, 6)1™
M=2
M even

< Co’lpl*d(p, 8)°

provided  |k|C|p|d(p,d) < 1//2, where C, = 2C,C% 5o
C,=Cy(L,,a,r)>0as L, ~0.

Lemma 4.3. Under the assumptions of Lemmas 4.1 and 4.2, we
have

(s

j=1

(6,5 ) L0 o4 i0) = L9 )

<[ 2C, 20V (N4 1) p| V! H d(p,6;)d(p,5) (49)
j=1
Proof. We have

N

_H(,a¢) LI (0. 6+ 6) = T(p. )]

< B (8o e

2 (M
<C, chp\Nndp, )Y CLEIL (il lol dip, 91 (410)

j=1

& el

Ml

=z

For 0 <y <1/2 we have

5 e, <1>NXN+1

(4 ]

Using (4.11) in (4.10), we get (4.9).
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., Lemmal 4.4. Let y,ed™, 5=8§,§), Ekﬂ(}’o):B(J’o, F(Lis1+4Ly)),
B/(c+1(J’0) By 1(yo)n A,
Horrwn= U Mepn.
ye B (o)
Suppose k is real and such that
Ly

C(log L P 2
|k C(log L, _ ) (15/6)Lk—Lk‘1<2

(4.12)

Then
L
}ER{ Y [I(p, ¢+ ixé)—I'(p, ¢)]H<K2nb log =£*1 (4.13)
peNkr1, 5.0 15L,
for some b=b(a, L,, r) with lim,, _,,5=0.

Proof. Let A = JV(,( 41,5, By the definition of sparse neutral
ensemble we can decompose .4~ according to the scale of its components,
ie., A4 can be written as the disjoint union

k
H=|) #0
/=2
where

N 0= (p0; xe B ()}

p!) being an (I—1, x, r)-admissible neutral charge density for some
x'e B~ V(x), satisfying (2.7) and (2.8).

In view of (4.12) we can use Lemma 4.2 for each p e .4, obtaining

}93{ > [F(P,¢+i’€5)—F(P>¢)]} <Cox? Y pl?d(p, 6)° (4.14)

peN pe A
Now
2 lpl*d(p, 8)*= Z 2 lpl*d(p, )
pe N (=2 pe ¥
k L[ . 2
< log L, )2p <—/‘___>
z z (log Ly |x"— yola

=2 XEE,EQLI(,V())
|x — yola= (15/6) Lk
k
<43 (ogL, ywlizt “3° 4@t)
I— 1 - 2
I=2

L? t=15Ly/61, lz
k LZ 1 L _
logL 2 1—1] log <_ k+1>
[E SR 15 L,
1L
<C4log<15 z“> (4.15)
k

822/64/1-2-11
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where C, is some fixed independent constant and Cy= C,{a, L;})—0

as L; — o0,
The result (4.13) now follows from (4.14) and (4.15).

Lemma 4.5. Let yq, 0, K, ‘/V=E/V(k+1,yoy,) be as in Lemma 4.4. Let
6= sféf_') €&, for j=1,.., N, where Ne {1, 2,..}. Then

N a - N
5 |11 (8 55) (o, 6+ i0) = 1o 011 < 1 OV T (3o, k1,5
pet lj=1 i=1
(4.16)
where C=C(L,, o, r, p)— 0 as L, > oo, and
d(y07k+1: Sg))
Lk+1 . ~ { 15[41 Ll+1}
—_ if B N{u,—<lu—x[, < #
=0l k+1(y0) 6 ‘ P 6 (4.17)
0 otherwise

Proof. By Lemma 4.3, the left-hand-side of (4.16) is

<IK2C,2C)Y (N+ 1)U Y oM+ ] dlp, 3) d(p, 8)  (4.18)

pe.Af j=1

We have

S el T dp, 5)dp, 8)=" Y lpI™*" [1 d(p,5;)d(p,5)

peN Jj=1 =2 pe /D) j=1

Let pe #©; we have d(p, 5])—0 unless (4.17) is satisfied. In that
case, let p be localized in B, (x'), x'€ BY~"(x), xe BY) |(yo). We have
d(p, 6;)=0 unless |x —x;|, = (15/6)L; .1 — L. Thus

%lx_y0|oo<%|x Yol < lx —x'|,

If d(p, ) #0, we have 3|x — yol, < |x"— pol,. Thus, (4.18) is bounded by

<K 2C,2C)N L (N +1)!
2 N 2

X (IOgL_ )p(N+1)LN+1
Z ! |x— J’0|oo, L 1% — Yola

xX€ E]E-[l 1()’0)
|x — yolz = (15/6) Lk




Power-Law Falloff in 2D Coulomb Gases 161

N
1
<k|2C(N+ 1) ] ———
' jl;II 1x;— yol2
[4CQog L, )" L,_,I¥*"! LHZI{“' 42t +1)

t=15L4/6L,
k T4 L P N+1
<[/ C, C,N! H——"i—[wﬂ) 5 [4Clog L)L, ] }
j=1 1% = Yol = LiLy

where C, is some independent constant. The term in brackets can be bounded
by some constant Cs(L,, «, r, p), such that C; —» 0 as L, — co. Thus, (4.16)
follows and the lemma is proved.

We are now ready to prove Lemma 2.3. Let uge A%+ with p¥ =p,,
for some y,e BY¥) (u,) and assume (2.18) holds, and let x > 0. We obtain
(2.19a) by performing the imaginary shift ¢ — ¢ +ike’"), with &= (g/|q|)x,
and taking (see also the proof of Lemma 3.3 in ref. 4)

p. —puo-l-ﬂAs"‘) (4.19)

_ F(Nyer 1 s @ +ikel))
wr $) =10 4) +1o { . 420
VP> 8)=7(pk, ¢) +log F(Nper 100 ) (420

L —xlql
Y% = (—1—;2—1> exp { 2% (e, —As;’;))} (4.21)
k
where ¢ =Q(p%) =3, p¥ (1), Ny 1, 0.0 is defined in Lemma 4.4, and

F(Npes1, o #)= T1 {1+e*®? cos[4(p)+ 3(p, $)]}

peA;

In (4.20) we used the fact that &% is constant over By(y,) and (2.5)
to conclude that

Yok, d+ixeld)=y(pk, §) (4.22)
Now (2.19b) follows from
0< (), —4e)< Y [e¥(x)— X))’

x, yeZ?
[x—ylha=1

<2nlog 1k21+O(L H
k

L
<2nlog §21(1+a)
k

where a=a(a, L,) >0 as L, -» .
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Notice also that p* and 4!}’ have disjoint supports, and
c"log Ly, <14el®|<c'log Ly, 4 (4.23)

for some constants 0 < ¢” < ¢’ < o0.
Relation (2.20) follows from Lemma 4.4; (2.21) follows from Lemma 4.5.
Notice that by (2.5), (4.16), and (4.20) we have

n

0 n "
0 (5,%) P ¢)( <n! [m:z,n [T d(o%, 8,)+xC [ d(yo k+1, 5,-)]

j=1 j=1 i=1

This completes the proof of Lemma 2.3.
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